428 research outputs found

    Numerical analysis of a dual-phase-lag model involving two temperatures

    Get PDF
    In this paper, we numerically analyse a phase-lag model with two temperatures which arises in the heat conduction theory. The model is written as a linear partial differential equation of third order in time. The variational formulation, written in terms of the thermal acceleration, leads to a linear variational equation, for which we recall an existence and uniqueness result and an energy decay property. Then, using the finite element method to approximate the spatial variable and the implicit Euler scheme to discretize the time derivatives, fully discrete approximations are introduced. A discrete stability property is proved, and a priori error estimates are obtained, from which the linear convergence of the approximation is derived. Finally, some one-dimensional numerical simulations are described to demonstrate the accuracy of the approximation and the behaviour of the solution.Peer ReviewedPostprint (author's final draft

    A dual weighted residual method applied to complex periodic gratings

    Get PDF
    An extension of the dual weighted residual (DWR) method to the analysis of electromagnetic waves in a periodic diffraction grating is presented. Using the α,0-quasi-periodic transformation, an upper bound for the a posteriori error estimate is derived. This is then used to solve adaptively the associated Helmholtz problem. The goal is to achieve an acceptable accuracy in the computed diffraction efficiency while keeping the computational mesh relatively coarse. Numerical results are presented to illustrate the advantage of using DWR over the global a posteriori error estimate approach. The application of the method in biomimetic, to address the complex diffraction geometry of the Morpho butterfly wing is also discussed

    Continuous, Semi-discrete, and Fully Discretized Navier-Stokes Equations

    Full text link
    The Navier--Stokes equations are commonly used to model and to simulate flow phenomena. We introduce the basic equations and discuss the standard methods for the spatial and temporal discretization. We analyse the semi-discrete equations -- a semi-explicit nonlinear DAE -- in terms of the strangeness index and quantify the numerical difficulties in the fully discrete schemes, that are induced by the strangeness of the system. By analyzing the Kronecker index of the difference-algebraic equations, that represent commonly and successfully used time stepping schemes for the Navier--Stokes equations, we show that those time-integration schemes factually remove the strangeness. The theoretical considerations are backed and illustrated by numerical examples.Comment: 28 pages, 2 figure, code available under DOI: 10.5281/zenodo.998909, https://doi.org/10.5281/zenodo.99890

    A space-time continuous finite element method for 2D viscoelastic wave equation

    Get PDF
    International audienceA widespread approach to software service analysis uses session types. Very different type theories for binary and multiparty protocols have been developed; establishing precise connections between them remains an open problem. We present the first formal relation between two existing theories of binary and multiparty session types: a binary system rooted in linear logic, and a multiparty system based on automata theory. Our results enable the analysis of multiparty protocols using a (much simpler) type theory for binary protocols, ensuring protocol fidelity and deadlock-freedom. As an application, we offer the first theory of multiparty session types with behavioral genericity. This theory is natural and powerful; its analysis techniques reuse results for binary session types

    Analysis of discontinuous Galerkin methods using mesh-dependent norms and applications to problems with rough data

    Get PDF
    We prove the inf-sup stability of a discontinuous Galerkin scheme for second order elliptic operators in (unbalanced) mesh-dependent norms for quasi-uniform meshes for all spatial dimensions. This results in a priori error bounds in these norms. As an application we examine some problems with rough source term where the solution can not be characterised as a weak solution and show quasi-optimal error control

    Discontinuous Galerkin methods for nonlinear scalar hyperbolic conservation laws: divided difference estimates and accuracy enhancement

    Get PDF
    In this paper, an analysis of the accuracy-enhancement for the discontinuous Galerkin (DG) method applied to one-dimensional scalar nonlinear hyperbolic conservation laws is carried out. This requires analyzing the divided difference of the errors for the DG solution. We therefore first prove that the alpha-th order (1 <= \alpha <= k+1) divided difference of the DG error in the L2-norm is of order k+(3-alpha)/2 when upwind fluxes are used, under the condition that |f'(u)| possesses a uniform positive lower bound. By the duality argument, we then derive superconvergence results of order k+(3-alpha)/2 in the negative-order norm, demonstrating that it is possible to extend the Smoothness-Increasing Accuracy-Conserving filter to nonlinear conservation laws to obtain at least (3k/2+1)th order superconvergence for post-processed solutions. As a by-product, for variable coefficient hyperbolic equations, we provide an explicit proof for optimal convergence results of order k+1 in the L2-norm for the divided differences of DG errors and thus (2k+1)th order superconvergence in negative-order norm holds. Numerical experiments are given that confirm the theoretical results
    • …
    corecore